Doyle, J. R., Slade, P. E. \& Jonassen, H. B. (1960). Inorg. Synth. 6, 216-219.
Fan, H.-F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation. Tokyo, Japan.
Hackett, M. \& Whitesides, G. M. (1988). J. Am. Chem. Soc. 110, 1449-1462.
Holloway, R. G., Penfold, B. R., Colton, R. \& McCormick, M. J. (1976). J. Chem. Soc. Chem. Commun. pp. 485-486.

Kullberg, M. L. \& Kubiak, C. P. (1986). Inorg. Chem. 25, 26-30.
Kullberg, M. L., Lemke, F. R., Powell, D. R. \& Kubiak, C. P. (1985). Inorg. Chem. 24, 3589-3593.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Molecular Structure Corporation (1994a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1994b). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6f. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Parthasarathi, V., Beurskens, P. T. \& Slot, H. J. B. (1983). Acta Cryst. A39, 860-864.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tsubomura, T., Itsuki, A., Homma, M. \& Sakai, K. (1994). Chem. Lett. pp. 661-664.
Yip, H.-K., Che, C.-M. \& Peng. S.-M. (1993). J. Chem. Soc. Dalton Trans. pp. 179-187.

Acta Cryst. (1998). C54, 1247-1249

Organometallic Selenolates. IX. \dagger (18-Crown-6)potassium (η^{5}-Cyclopenta-dienyl)bis(1,4-tetraselenido-Se ${ }^{1}, S e^{4}$)tungstate(IV)

Carsten Thöne, Peter G. Jones, Jörg Laube and Stefan Jäger

Institut für Analytische und Anorganische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany.E-mail: thoene@xray36.anchem. nat.tu-bs.de
(Received 10 February 1998; accepted 30 March 1998)

Abstract

The title compound, $[(18-\text { crown- } 6) \mathrm{K}]^{+}\left[\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{Se}_{4}\right)_{2}\right]^{-}$or $\left[\mathrm{K}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{W}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{Se}_{4}\right)_{2}\right]$, consists of the anion $\left[\mathrm{CpW}\left(\mathrm{Se}_{4}\right)_{2}\right]^{-}$(where Cp is cyclopentadienyl), which is linked to the $[(18 \text {-crown- } 6) \mathrm{K}]^{+}$cation via two potassium-selenium contacts of 3.457 (5) and 3.527 (5) \AA. One of the WSe_{4} rings adopts an envelope conformation, whereas the other WSe_{4} ring lies between the standard envelope and half-chair conformations.

\dagger Part VIII: Jones et al. (1998).

The corresponding $\mathrm{W}-\mathrm{Se}$ bond lengths lie in the range 2.441 (2) -2.570 (2) \AA, indicating asymmetry in the chelation of both Se_{4} ligands, which can also be seen from the $\mathrm{Se}-\mathrm{Se}$ bond-length range of 2.300 (4)2.447 (3) Å.

Comment

Transition-metal-selenido complexes exhibit interesting structural features associated with a variety of binding modes of the Se_{n}^{2-} ligands. Numerous crystal structures of (oligoselenido)metallate complexes have been reported, of which $M\left(\mathrm{Se}_{4}\right)_{n}^{2-}$ complexes are the most common (Cambridge Structural Database, Version of October 1997; Allen \& Kennard, 1993; Wardle, Bhaduri et al., 1988), because of the high stability of five-membered $M \mathrm{Se}_{4}$ rings. However, examples of organometallic $R M\left(\mathrm{Se}_{4}\right)_{x}$ systems are rare. During our studies on new syntheses of transition-metal-selenido complexes, we described the formation of the tetraselenido complex $\left[\mathrm{CpW}(\mathrm{CO})_{3}\right]_{2} \mathrm{Se}_{4}$ (where Cp is cyclopentadienyl) via insertion of elemental selenium into the alkali-metal-tungsten bond of $\left[\mathrm{LiWCp}(\mathrm{CO})_{3}\right]$ in an appropriate ratio and subsequent oxidation with oxygen on SiO_{2} (Jones \& Thöne, 1996). A crystal structure analysis revealed a $\mu_{2}-\eta^{1}$ bonding pattern of the Se_{4}^{2-} ligand (Jones et al., 1998). We present here the crystal structure of $[(18 \text {-crown- } 6) \mathrm{K}]^{+}\left[\mathrm{CpW}\left(\mathrm{Se}_{4}\right)_{2}\right]^{-}$, (1).

(1)

Compound (1) consists of a cation-anion pair. The K^{+}cation lies 0.694 (8) \AA out of the best plane through the O atoms of the crown ether [K-O 2.774 (14)$2.939(14) \AA$] and is involved in weak interionic K \cdots Se contacts of 3.457 (5) (K . . Sel) and 3.527 (5) \AA (K $\cdots \mathrm{Se} 3$). The $\left[\mathrm{CpW}\left(\mathrm{Se}_{4}\right)_{2}\right]^{-}$anion consists of two WSe_{4} rings with a common W atom. The coordination geometry at the W atom is slightly distorted tetragonal pyramidal, with W 0.999 (1) \AA out of the basal plane (atoms $\mathrm{Sel}, \mathrm{Se} 4, \mathrm{Se} 5$ and Se 8 ; r.m.s. deviation $0.42 \AA$). The $\mathrm{Se} \cdots \mathrm{Se}$ contacts in this plane range from 2.937 (3) to 3.519 (3) \AA, with $\mathrm{Se} \cdots \mathrm{Se} \cdots \mathrm{Se}$ angles between 82.73 (7) and 95.52 (7) ${ }^{\circ}$. The W- Cp (centre) vector makes an angle of $180(1)^{\circ}$ with the normal to the base of the pyramid.

The chelation of the Se_{4}^{2-} ligands is asymmetric in both WSe_{4} rings; as seen from the W-Se bond
lengths in each ring [ring $A: W-S e l 2.570$ (2) and $\mathrm{W}-$ Se4 2.441 (2) \AA; ring $B: W-S e 52.529$ (2) and $\mathrm{W}-$ Se8 $2.444(2) \AA$]. A comparable but less pronounced bonding asymmetry can be seen in the analogous $\left[\mathrm{CpMo}\left(\mathrm{Se}_{4}\right)_{2}\right]^{-}$anion, in which the shorter Mo-Se bonds are 2.463 (1) and 2.474 (1) \AA, whereas the other Mo-Se bond lengths, 2.533 (1) and 2.542 (1) \AA, are only slightly longer (Herath Banda et al., 1989).

The W-Se bond lengths in (1) are comparable with those observed in other $\mathrm{W}_{n} \mathrm{Se}_{m}^{2-}$ anions [cf. $2.395(3)-2.546(3) \AA$ in $\left(\eta^{2}-\operatorname{Se}_{2}\right) W \operatorname{Se}(\mu-\operatorname{Se})_{2} W \operatorname{Se}\left(\eta^{2}-\right.$ Se_{3}) and 2.401 (3)-2.556 (3) \AA in $\left(\eta^{2}-\mathrm{Se}_{2}\right) \mathrm{WSe}(\mu-\mathrm{Se})_{2}-$ WSe $\left(\eta^{2}-\mathrm{Se}_{4}\right)$; Wardle et al., 1987]. These anions also contain $\mathrm{W}=$ Se double bonds with lengths 2.242 (3)2.258 (3) Å.

The intra-chelate angles in (1) are 87.29 (8) (Sel-$\mathrm{W}-\mathrm{Se} 4)$ and $90.09(8)^{\circ}$ (Se8-W-Se5), and the inter-chelate angles are 71.67 (8) (Se8-W-Sel) and 74.33 (8) ${ }^{\circ}$ (Se4-W-Se5). Closely similar values can be found in the $\left[\mathrm{CpMo}\left(\mathrm{Se}_{4}\right)_{2}\right]^{-}$anion. More symmetric chelation of the Se_{4}^{2-} ligand can be observed in the anions $\left[\mathrm{MoO}\left(\mathrm{Se}_{4}\right)_{2}\right]^{2-}$ and $\left[\mathrm{WS}\left(\mathrm{Se}_{4}\right)_{2}\right]^{2-}$, in which the $M-S e$ bond lengths differ only slightly, i.e $\left[\mathrm{MoO}\left(\mathrm{Se}_{4}\right)_{2}\right]^{2-} 2.465(1)-2.512(1) \AA$ and $\left[\mathrm{WS}\left(\mathrm{Se}_{4}\right)_{2}\right]^{2-}$ 2.435 (1)-2.487 (1) A (Wardle, Mahler et al., 1988).

The $\mathrm{Se}-\mathrm{Se}$ bond lengths lie in the range 2.300 (4) (Se6-Se7) to 2.447 (3) \AA (Se3-Se4). The longest bonds in this range correspond to the shorter neighbouring W-Se bonds, whereas the shortest bonds are observed between the β-Se atoms. Similar bond lengths were observed in both $\left[\mathrm{MoSe}\left(\mathrm{Se}_{4}\right)_{2}\right]^{2-}[\mathrm{Se}-$ Se 2.291 (5)-2.461 (5) Å; O'Neal \& Kolis, 1988] and $\left[\mathrm{CpMo}\left(\mathrm{Se}_{4}\right)_{2}\right]^{2-}(2.310-2.419 \AA)$. However, in the organometallic derivative $\left[\mathrm{CpW}(\mathrm{CO})_{3}\right]_{2}\left(\mu_{2}-\eta^{1}-\mathrm{Se}_{4}\right)$, a different situation was found. The W-bonded Se_{2} moieties display shorter $\mathrm{Se}-\mathrm{Se}$ bond lengths [2.321 (2) and $2.322(2) \AA$] than the central $\mathrm{Se}-\mathrm{Se}$ bond length of 2.367 (2) \AA (Jones et al., 1998).

Fig. 1. The structure of (1) in the crystal. H atoms have been omitted. Ellipsoids represent 50% probability.

The WSe_{4} rings in (1) display two different conformations. Ring A (W, Sel-Se4) adopts an arrangement that lies between the standard envelope and half-chair conformations. Ring B (W, Se5-Se8) adopts an envelope conformation with the flap at Se6. Essentially the same situation can be observed in the corresponding molybdenum anion. An interesting case was described for the $\left[\mathrm{Pt}\left(\mathrm{Se}_{4}\right)_{3}\right]^{2-}$ ion, in which all PtSe_{4} rings adopt an envelope conformation with β-Se atoms as the flaps (Ansari \& Ibers, 1989). This arrangement leads to a pseudo-octahedral geometry at platinum and therefore to chirality. For the $\left[\operatorname{Pt}\left(\mathrm{S}_{5}\right)_{3}\right]^{2-}$ anion, the optical isomers were resolved (Gillard \& Wimmer, 1978).

Experimental

$[(18 \text {-crown- } 6) \mathrm{K}]^{+}\left[\mathrm{CpW}\left(\mathrm{Se}_{4}\right)_{2}\right]^{-}$was obtained from the reaction of $\mathrm{K}_{2} \mathrm{Se}_{8}$ with 18 -crown- 6 and $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{Cl}$ according to Jones et al. (1998). Single crystals were obtained by layering a dichloromethane solution with diethyl ether.

Crystal data

$\begin{aligned} & {\left[\mathrm{K}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{W}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)-\right.} \\ & \left.\left(\mathrm{Se}_{4}\right)_{2}\right] \end{aligned}$	Mo $K \alpha$ radiation $\lambda=0.71073 \AA$
$M_{r}=1184.03$	Cell parameters from 62
Monoclinic	reflections
$P 2_{1} / n$	$\theta=5.5-12.5^{\circ}$
$a=13.488$ (5) \AA	$\mu=13.744 \mathrm{~mm}^{-1}$
$b=10.113$ (3) \AA ¢	$T=173$ (2) K
$c=22.223$ (10) \AA	Plate
$\beta=98.78$ (2) ${ }^{\circ}$	$0.42 \times 0.18 \times 0.02 \mathrm{~mm}$
$V=2996(2) \AA^{3}$	Dark green
$Z=4$	
$D_{x}=2.625 \mathrm{Mg} \mathrm{m}^{-3}$	
D_{m} not measured	
Data collection	
Siemens $P 4$ diffractometer ω scans	2705 reflections with $I>2 \sigma(I)$
Absorption correction:	$R_{\text {int }}=0.089$
ψ scans (XEMP; Siemens,	$\theta_{\text {max }}=25.01^{\circ}$
1994a) assuming lamina	$h=-15 \rightarrow 16$
100	$k=-12 \rightarrow 4$
$T_{\text {min }}=0.113, T_{\text {max }}=0.760$	$l=-26 \rightarrow 4$
7747 measured reflections	3 standard reflections
5238 independent reflections	every 247 reflections intensity decay: 1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.164$
$S=0.920$
5238 reflections
298 parameters
H atoms constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0721 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{gathered}
$$

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
ell parameters from 62 reflections
$\theta=5.5-12.5^{\circ}$
$\mu=13.744 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Plate
$0.42 \times 0.18 \times 0.02 \mathrm{~mm}$ Dark green

2705 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=25.01^{\circ}$
$-15 \rightarrow 16$
$k=-12 \rightarrow 4$
$=-26 \rightarrow 4$
and reflections intensity decay: 1%
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=2.15 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.25 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

W-Se4	2.441 (2)	Se2-Se3	2.325 (3)
W-Se8	2.444 (2)	Se3-Se4	2.447 (3)
W-Se5	2.529 (2)	Se3-K	3.527 (5)
W-Sel	2.570 (2)	Sc5-Se6	2.386 (4)
$\mathrm{Se} 1-\mathrm{Se} 2$	2.378 (3)	Se6-Se7	2.300 (4)
Sel-K	3.457 (5)	Se7-Se8	2.442 (3)
Se4-W-Se8	124.74 (8)	Se3-Se2-Scl	96.16 (10)
Se4-W-Se5	74.33 (8)	Se2-Se3-Se4	99.45 (11)
Se8-W-Se5	90.09 (8)	$\mathrm{Se} 2-\mathrm{Se} 3-\mathrm{K}$	91.32 (10)
Se4-W-Sel	87.29 (8)	Se4-Se3-K	80.92 (11)
Se8-W-Sel	71.67 (8)	W-Sc4-Se3	114.03 (9)
Se5-W-Sel	140.21 (8)	Sc6-Se5-W	103.89 (10)
Se2-Sel-W	101.82 (9)	Se7-Se6-Se5	96.95 (13)
Se2-Sel-K	92.16 (11)	$\mathrm{Se} 6-\mathrm{Se} 7-\mathrm{Se} 8$	97.73 (12)
W-Sel-K	103.66 (9)	Se7-Se8-W	114.46 (11)
Se4-W-Se1-Se2	-53.46 (10)	Se8-W-Se5-Se6	-43.48 (12)
W--Se1-Se2-Se3	65.60 (12)	W-Se5-Se6-Se7	63.12 (12)
$\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Se} 3-\mathrm{Se} 4$	-43.10 (13)	Se5-Se6-Se7-Sc8	-48.51 (12)
Sel-W-Sc4-Se3	25.73 (11)	Sc6-Se7-Se8-W	23.19 (15)
Se2-Se3-Se4-W	9.73 (14)	Se5-W-Se8-Se7	12.28 (12)

H atoms were included using a riding model. The residual electron density of $2.15 \mathrm{e}_{\AA^{-3}}$ is $1.0 \AA$ from the W atom, and that of $-1.25 \mathrm{e}^{\AA} \AA^{-3}$ is $1.45 \AA$ from W. This may be attributed to residual absorption errors associated with an extremely thin plate.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1994b). Software used to prepare material for publication: SHELXL93.

We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1451). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. New's, 8, 31-37.
Ansari, M. A. \& Ibers, J. A. (1989). Inorg. Chem. 28, 4068-4069.
Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Gillard, R. D. \& Wimmer, F. L. (1978). J. Chem. Soc. Chem. Commun. pp. 936-937.
Herath Banda, R. M., Cusick, J., Scudder, M. L., Craig, D. C. \& Dance, I. G. (1989). Polyhedron, 8, 1999-2001.
Jones, P. G., Laube, J. \& Thöne, C. (1998). Eur. J. Inorg. Chem. pp. 397-400.
Jones, P. G. \& Thöne, C. (1996). Inorg. Chem. 35, 6625-6626.
O'Neal, S. C. \& Kolis, J. W. (1988). J. Am. Chem. Soc. 110, 19711973.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). XP. Molecular Graphics Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wardle, R. W. M., Bhaduri, S., Chau, C.-N. \& Ibers, J. A. (1988). Inorg. Chem. 27, 1747-1755.
Wardle, R. V. M., Chau, C.-N. \& Ibers, J. (1987). J. Am. Chem. Soc. 109, 1859-1860.
Wardle, R. W. M., Mahler, C. H., Chau, C.-N. \& Ibers, J. (1988). Inorg. Chem. 27, 2790-2795.

Acta Cryst. (1998). C54, 1249-1251

Bis(tetra- n-butylammonium) Bis[(methyllactato)dioxovanadate(V)] Dihydrate \dagger

Ivana Smatanová, ${ }^{a}$ Jaromír Marek, ${ }^{a}$ Peter
Švančáren ${ }^{b}$ and Peter Schwendt ${ }^{b}$
${ }^{a}$ Laboratory of Biomolecular Structure and Dynamics, and Department of Inorganic Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic, and ${ }^{\text {b }}$ Department of Inorganic Chemistry, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia.E-mail: ivas@chemi.muni.cz

(Received 9 December 1997; accepted 25 February 1998)

Abstract

The crystal structure of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{VO}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)\right]_{2} .2 \mathrm{H}_{2} \mathrm{O}$ consists of the dimeric $\left[\left\{\mathrm{VO}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)\right\}_{2}\right]^{2-}$ anion with C_{i} symmetry, two $\mathrm{Bu}_{4} \mathrm{~N}^{+}$cations and two water molecules. The V atom is pentacoordinated by O atoms in a tetragonal-pyramidal arrangement.

Comment

Knowledge of the properties of vanadate complexes is essential to vanadium biochemistry. Information about the interactions of vanadate with biogenic ligands will be needed so that the most potent and biologically significant interactions can be identified (Sigel \& Sigel, 1995). In the course of our work on model oxygenvanadium compounds (Sabirov et al., 1984; AngusDunne et al., 1994), we isolated the title compound, (I).

(I)
\dagger Systematic name: bis(tetra- n-butylammonium) bis $[\mu$-2-hydroxy-2-methylpropanoato(2-)]-1 $\kappa^{2} O^{1}, O^{2}: 2 \kappa O^{2} ; 1 \kappa O^{2}: 2 \kappa^{2} O^{1}, O^{2}$-bis[dioxovanadate (V)] dihydrate.

